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We will establish that the composition operator Ty : g — f o g takes the intersections of Triebel-Lizorkin
spaces F}, . (R™) with a certain space of bounded and continuous functions to F}; , (R™), under some conditions
on the parameters 7, s, p and g. Also, a similar partial result corresponding to the Besov spaces B, ,(R") will
be given.
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1 Introduction

Let B, ,(R") and F}; ,(R") denote the real-valued functions of the Besov space and the Triebel-Lizorkin space,
respectively. For a real function f defined on R which belongs locally to F;  (IR) and vanishes at the origin,
we will search for an optimal restriction on the parameters n, s, p and g such that the composition operator
Ty : g — fogtakes F; (R") into itself. We recall that some necessary acting conditions are known; in this
sense we own the following result (see [3], [16]-[18]):

Theorem 1.1 Let 1 + (1/p) < s < (n/p) and let f : R — R. Then Ty takes B, ,(R") (or F; ,(R"))
into itself if and only if there exists some constant ¢ such that f(t) = ct. The same result holds in the limit case
1+ (1/p) = s < (n/p), as soon as q > 1 in the case of B,, ,(R"), or p > 1 in the case of F; ,(R").

We note that the composition operator problem in B;  (R") N Lo (R") and in F;  (R") N Lo (R™) is not
trivial in the sense that the function f need not be linear, see e.g. [6]-[9]. To study composition operators on
intersections has a certain history: in Sobolev spaces by Adams and Frazier [1], [2], and in fractional Sobolev
spaces by Brezis and Mironescu [10] and by Maz’ya and Shaposhnikova [13]. In this direction, we will consider
T’y on the intersections of F;; (IR") with a certain space of bounded and continuous functions K = K(s), see
(1.1) below. Thus our essential contribution in this paper will concern the Triebel-Lizorkin spaces. Also, we
will give a similar partial version for the Besov spaces. But before we formulate this we will use the following
notation, which depends on the choice of the parameter s; we put:

() B%,®R") if [s]=1,

IC = { 0<r<oco (1.1)
VVolO (R™) otherwise.
Theorem 1.2 Let1 < p < 400, let 1 < q < 400 and let a real number s be such that
1
s—[s] > = and [s] > 1. (1.2)
p

Let f : R — R be a Borel function. Then the composition operator Ty takes F,; (R") N K to F,; (R") if and
only if f(0) = O and f € F:[°“(R).
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318 M. Moussai: Composition in Triebel-Lizorkin spaces

Concerning the “philosophy” of this work, we formulate a reasonable conjecture:

Letl1 < p <ooletl <qg<ooandlets > 1+ (1/p). Let f : R — R be a Borel function. Then Ty is an
operator from E5  (R") N Lo (R™) to E5 (R") if and only if f(0) = 0 and f € E3'°°(R) ; (here E5 , = Bs |
or F? )

P.q

In the case n = 1 this conjecture was proved partially for both Triebel-Lizorkin space and Besov space, cf. [8],
[9]. Bourdaud in [5] has proved that T takes B, ,(R") N L>(R") to B; ,(R")if f(0) = 0 and f € B;f;‘;c (R)
fors > 1and ¢ > s > [s] 4 (1/p). Compared to this result, in Theorem 1.2 we have f € F;'[°°(R), although
we are far from the previous conjecture by considering the intersections of £}, (R") with /C. Also in the context
of the conjecture and still for 1 + (1/p) < s < (n/p), we refer to the works of Bourdaud [3], [4] and Runst
[16], [17].

In the goal of the brevity of the paper, some remarks are needed for us.

Remark 1.3 The necessity parts in the conjecture as well as in Theorem 1.2 are covered by [17, 5.3.1,
Thm. 2, p. 297].

In the context of Remark 1.3, the following conditions are necessary for a function f, such that T} takes
E; (R") into itself:

(A) fe B R),

(B) f islocally Lipschitz continuous, cf. [4].

We have (A) = (B) if s > 1 4 (1/p), using a classical Sobolev embedding. Also if 0 < s < 1 we have
Ty (E; ,(R")) < E;, (R") if and only if f(0) = 0 and either f is locally Lipschitz continuous
(if E5 ,(R™) C Loo(R™)) or f is uniformly Lipschitz continuous (if B; ,(R") ¢ Loo(R™)), cf. [4], [17].

Remark 1.4 The conditions f(0) = 0 and f' € Loo(R) imply || fo g, < || f'|locllgll, Which is sufficient
for the estimate of T (g) with respect to the L, (R")-norm.

Remark 1.5 For the proof of Theorem 1.2 in the case n = 1, we will limit ourselves to a functions “g which
is real analytic” in F}; ,(R) using the ideas of [6, proof of Thm. 7]. The general case, i.e., g € F,;  (IR), can be
obtained by Fatou’s property, cf. [9], [12].

2 Preparations

2.1 Notation

We work in Euclidean spaces R" withn = 1,2, ... All distribution spaces are contained in the distribution space
S’(R™). All functions are assumed to be real-valued. By || — ||, we denote the L, norm. We denote by W (R")
the space of bounded functions such that the first order weak derivatives are bounded, equipped with the norm

I ey s= 51+ 3 |

0o
For a space E of tempered distributions defined on R" the associated local space is defined by
EY.={feS8: ¢f € E,Vo € DR")}.
We define the differences for an arbitrary function f by
Anf(@) = flx+h)— fl@)  (VhaeR"),

and AM f = Ay (A)Y ' f),...If s is a real number then [s] denotes the integer part of s, i.e., the largest integer
less than or equal to s.

Throughout this paper we will consider parameters s, m, p,q and M, which are supposed to satisfy s > 0,
1<p<oo,1<q<o0,and m, M € NU {0}. Furthermore we suppose m = [s] and m < M. In Subsection
2.3 below also p = 1 and p = oo are admissible in case of Besov spaces B} , (R™) and p = 1 in case of Triebel—
Lizorkin spaces F) ,(R"), respectively. Also, we will use a cut-off function denoted by p;: we fix p € D(R), a
function such that supp p C [—2,2] and p(z) = 1 if z € [—1, 1], and we put p;(x) = p(x/t).

As usual, constants ¢, ¢y, . .. are strictly positive and depend only on the fixed parameters n, s, p and g; their
values may vary from line to line.
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2.2 The p-variation function spaces

A function g is said to be of bounded p-variation if v,(g) < +oo, where

1/p
vp(g) = sup (Z lg(tr) tk1)|p> cV{t b CRLtg <t <-o- <ty

By BVp1 (R) we denote the space of primitives of functions of bounded p-variation, and endow it with the semi-
norm

I v, =) == inf 1 (g),

where the infimum is taken of all functions g such that f is a primitive of g. While defining BV;} (R) by the
primitives, this space is defined as a space of true functions and not of functions modulo almost everywhere. This
small subtlety is rather well explained in [7]. The space B Vp1 (R) is not embedded in L, , however we have at our
disposal the embedding

B, " (R) — BV(R), @2.1)

which is given by Peetre (cf. [15, p. 112] or [6, Thm. 5]) for homogeneous Besov space and can be easily extended
to nonhomogeneous Besov space. Also some properties of BVp1 (R) can be found in [6], [7], [11].

2.3 Some equivalent norms in B,  (R™) and F;  (R™)

For the definition and general properties of the Besov spaces and the Triebel-Lizorkin spaces we refer to [15],
[17], [19], [20]. Also, all the following assertions are proved in Triebel’s book [20, pp. 140144 and p. 194].

(i) The following two expressions

M |2 Ha - ! q dt Ha
I+ ([ ot g ) aa w3 ([ eerat g )
j=1
define equivalent norms in B; , (R"), where {ey, ..., e, } denotes the canonical basis of R".
(i) Lets > o=t—. Then a function f belongs to Py (R") if:
o AN\
190z ey = W1+ ( [ o8 pe) ) dr| < too.
rr \JRrr ||
(iii) Let1 <wu < oo and
1 11 1
s>max(,>. 2.2)
p U ¢ u

Then the following expression

a/u
RS | dt
I fllp + / / t <t / |A | dh) ¥ dzx
R 0 |h| <t

defines equivalent norm in F};  (R).
(iv) One can replace [g, ... dh/[h|" in (i) and (i) by [, _, ... dh/|R[" ; also, J,° .. dt/t in (iii) can be

replaced by fol ... dt/t, because of the part of integral which |h| > 1 or ¢ > 1 can be estimated by the
L, norm of such function.

(v) For any integer k > [s] — 1 the following expression
k
defines equivalent norm in E3  (R), (recall E5  (R) = B (R) or F  (R)).
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3 The Besov case

3.1 Thecasen =1
We first deal with the case of one dimensional spaces. We will recall the part of [9, Thm. 2] which is in connection
with the condition (1.2).
Theorem 3.1 Let s a real number such that

1
s—[s]>.¢+f—1 and [s] > 1. 3.1
min(p,q)  p
Let f : R — R be a function such that f(0) = 0and f € B;:g“’ (R). Then the composition operator T takes the
space By (R) into itself.
In the sequel of this section we put

a:=min(p,q) = g 4 L oy ud = gla(s—[s]+1—(1/p)) _i)' (3.2)

P ag(s—[s]+1—(1/p)) —

The following proposition is the explicit version of Theorem 3.1, which turns to be an essential tool for multidi-
mensional case, cf. Remark 3.3 below. Namely,

Proposition 3.2 Suppose (3.1). Then there exists a constant ¢ = ¢(p, q, s) > 0, such that the inequality

||f ) < CH (fpt)(m) ||BS*’” (R)
s—m (1 m—
x (1+llgllyn™ &) Nl Ua8)) (1 + U/ lloe)™ gl oy (33)

holds, Vf : R — R such that f(0) =0and | € B;:é"”(R), and Vg € B; (R), and Vt > max(1, [|g]/co)-
Remark 3.3 By the embeddings B; ' (R) < Lo (R) and B} ,(R) — BY, . (R) and by the inequality

19"l 3; 1y <

the second member of (3.3) can be replaced by

el (fp)™) |

but for technical reasons concerning the case n > 2 we prefer to keep it in this form.
Remark 3.4 Observe that (3.1) implies s > 1 + (1/p). This restriction has been used also in [5], [8], [9].

)s—(l/p)7

iz ) (L + lgll; )

Proof of Theorem 3.1 The result follows from Proposition 3.2 by taking ¢ > max(1, ||g||~) and by
Remark 3.3. 0O

Then it remains to prove Proposition 3.2. We need first to recall the following result proved in [9], (see also
[8, Prop. 3]):

Proposition 3.5 Ler 1 + (1/p) < s < 2. Then there exists a constant ¢ = c¢(p,q,s) > 0, such that the
inequality

I fogllss, @ <clf]

(1
s (19l @ + ol ) G4

holds, ¥ f : R — R such that f(0) = 0 and f' € B;".'(R), and Yg € B ,(R) N BV R).

s—a/p)

Proof of Proposition 3.2 We will prove the assertion by induction on m.
Step 1. The case m = 1. We use an inequality of Galiardo—Nirenberg’s type, similar to Theorem 2.2.5 of [17].
For all § €]0, 1] it holds:

1-6
) R B
B; ,(R) (Vg €B,[R), r= 1—(9/61)) : (3.5)

(© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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We choose
_ p
a(s — (1/p))

Then combining (2.1) and (3.5) we obtain the following chain of embeddings

(# €]0,1] see condition (3.1)). (3.6)

s s 1+(0/p
B; ,(R) = B3y (R) = B, /" (R) = BV, (R).

Let now ¢t > ||g||o0, Which implies p; o g = 1. Using both Proposition 3.5, with fp; instead of f, and (3.5), we
get

[fogl

sia® = (o) 0l o

P.q

s—1—0 B—(1/1
< cll(Fo) g5 my (1 + gl e lolls; 5)) Nl

By taking into account that po; p; = p}, if t > max(1, ||g||leo ), cf. [17, 4.7], then we obtain

By 4 (R)-

1 o1+ f2e(pe) | g -1 (my
||flpt|B;_711<R) + H(pt)/|
< e (Ifnl Bt e

the last inequality follows from the properties of pointwise multiplication in Besov spaces, cf. [17, Thm. 4.7.1,
p- 229], namely

| (fp) HB;fql(R)

IN

B (R) I1f pa] By (R)

B -lr) T I|.f 2|

B M(R) - Bs H(R) — By '(R).

To prove (3.5) we first recall that for all sequence {i;}32, C S(R") such that supppy C {€ : [§| < 2},
suppp; C {€ 12771 < J¢| <27H1}ifj=1,2,...and

d @) =1 (VEeR"),
j=0

we have equivalent norm in Besov spaces defines by the formula
1/q

1£1ls; , @y = | D27 1F (o5 FIE < o0, 3.7
=0

where F and F~! are the Fourier transform and the inverse Fourier transform, respectively; see e.g., [17] or [19].
Now since

sj — — — 5] — 0
25N F @i F) lpso < 1 F (05 Fo) 1557 2 | F ey Fo)lly)

then we sum over the j and we conclude using the Holder’s inequality with (8/q) + ((1 —6)/r) = 1.
Step 2. The case [s] = m + 1. Before applying the induction assumption, we will give some preparations. We
put

! (x €R).

We have fi € B;°°(R). Also forall j € {1,...,m + 1} we have the four following estimates:
®

||g/|B;_;J(R) < C||9|B;’3.q(]R)7
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(ii) using the Banach algebra property of Lo (R) N B, ,(R) cf. [17, Thm. 4.6.4/2, p. 222], i.e.,

g1 - 92|

B, ®) < c(lg1llcllgel

B, ® + loills;, @ llg2llec)
(v.glag2 € LOO(R) N B[:ﬂq(R))7

we obtain
97155, < 1 (ollocll’ g, gy + ol o 9~ ]L)
< erlglloo (9l 191, oy + llgllzg o lgllic?)
+eullgls: ) lgllis!
< cusllglls: @ lgliis?,
(iii)
[P0 = [ )P O] < (Fo) W < ellFo) | ge gy
(@iv)
1™ egll, = [[(ip)0 " oy,
< [(frp) | gl < C“(f1pt)(j)|B;;j<R) l9llB; , ®)-

Now since fl(j)(O) =0 (j=1,2,...,m+1)and

B<s—(m+1) <1 (seecondition (3.1)),

then by Section 2.3/(v), and by the Banach algebra property of L. (R) N B;,’Izj (R) again, we obtain

[ fogl

B; (R)

IN

IN

IN

IA

m+1 i
S0
Ifioglls;, @ + Z THQ”

=1

B; ,(R)

e [ 19lloe 15t 0 9l gy + 19/ lls 1 gy 1 0 glloe + 11 0 gl

m+1

+ S0 sy gl Tl
j=1

B; ,(R)

e2 {119/ 17 gll g gy + 119" oe (57 © 9llp + 119" g 32 gy I © gl )
1/ oy 1 e + 100 s oy gl 0 )
m+1
+c Z ||(fpt)(]>| By (R) ||g||<])o_1 Hg‘ By ,(R)
j=1
m+1 )
em | g% ||f1(m> oygl By7"(R) T Z 1(fpe)9] B, (R) g1l s (R)
j=1 '
m+1
+ Z H(flpt)<]_1)| B;:]-/’(R)HQHB;_{](R)
i=1
m+1

i1y
g wllg s 1955wy

+ Z ||(f1Pt)<j>|
j=1
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The estimate of the three last terms is obvious, however by the assumption of induction on m applied to ffm it
follows

|| f(m> Og} (m+1)

B;:Im (R) S Cm+1 H (flpf) ;:(m H)(]R)

1)-3 B—(1
x (14 gl ™~ gl 6/ ) g

Bl (R)"
‘We note that it is clear in this case

p
a(s—m+1-(1/p))

0 := (see (3.6)). (3.8)
3.2 Thecasen =2,3,...

We turn now to the multidimensional case, so we prove the following precise result:
Theorem 3.6 Let s and f be as in Theorem 3.1. Suppose p < q. Then the composition operator T} takes
s (RY)N K to By (R).
Proof. Forz € R" and y € R we put

~

= (21,1, %1, %) and gz (Y) = g1, 1, Y, Tty T (3.9)

By the inequality of Minkowski with respect to L it follows

q/p>

1 | b NP at
/‘<fﬂp/j|ﬁﬁ(fogx@y(m) dt
0 Rn J 7
1 ) a/p dt
::/ (t_sp/ HA?J(foggé_,)Hi d@) -
0 Rn -1
' / ¢ dt /a q/p
: (/ (/ (t_ Aiu (fogg« H ) ) dfj)
R —1 0
» R a/p
- (/ H f © 9z, ‘ Bs (R) dxj) .
R —1 P

Also from Proposition 3.2 and the embedding B;, ,(R) — B,  (R), it holds
1f o9, |

B: ,(R) < C||(fﬂt)(m)| B (R)

m—1
< (14 llo o) (1 llom g™ ™™ Yo, |

B; ,(R)’
where 7 is given by (3.2), and for all £ > max(1 ~ ). Now the following inequalit
g y ) 119 g mequality
1/p

([ tas iy, 085) < clolag e

yields
s—=1—(1/1

1 oglsy, @) < el(fo)™ g g O +llgle) ™ """ llgls; , @) (3.10)

This completes the proof. O

We can consider the case p > ¢ by the following result.
Corollary 3.7 Let s and f be as in Theorem 3.1. Let € be a real number such that

0<e<s, and €#0 if p>q.
Then the composition operator T takes By, ,(R") N K to By (R") .
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Proof. The case p < g is given by the previous theorem. Assume that p > ¢. Since By:1°°(R) — B32%°(R),
then Theorem 3.6 implies that T’ takes B, ,(R")NK to By . (R" ). Then we deduce the result by the embedding
B L (R") — B3-5(R"). O

4 Proof of Theorem 1.2

The proof is based on an inequality of type (3.4) for the Triebel-Lizorkin spaces, which is an essential part of this
section.

Proposition 4.1 Let 1 + (1/p) < s < 2. Then there exists a constant ¢ = c(p,q,s) > 0, such that the
inequality

[ fogl

1 /]
rm < el (lole, @+ gl ) @.1)

holds, ¥ f : R — R such that f(0) = 0 and f' € F; ' (R), and ¥g € F} (R).

We turn to the proof of Theorem 1.2. Let f be as in Theorem 1.2, and let g € F}; ,(R") N K.
Step 1. The case n = 1. Since F) | (R) = B, ., (R), then (3.5) (with max(p, ¢) instead of ¢) leads to

p,max

_ . 1-6
) < cllgllin’ g ol @ (Vg € By, (R), 1 = ) (42)

gl gos 1 — (8/ max(p, q))

p/o, 1 (
Also we have

F: (R) = B (R) = B, (R) — BL /7" (R) — BV, | (R). 4.3)

sp—1,1
Using the induction on m: as in Step 1 and 2 of the proof of Proposition 3.2, for all ¢ > max(1, ||¢||~ ), We obtain
by combining (4.1), and both (4.2) and (4.3) with
1 1
= Z JE—
s—m+1—(1/p) s —(1/p)

an inequality similar to (3.3). Namely:

| fogl

(see (3.8)), 4.4)

Fr,® = [[(fe)ogllr, =
m m—1 s—m—(1
< el (o) psm s (1 g llee)™ ™ (L g™ o) gl e
Noticing that, as in (3.10), we have the estimate
17 oglles, @ < el(fo)™ gs—n g (1+ llgllc)”™ £ ®)- 4.5)

Step 2. The case n > 2. Using the notation gz, of (3.9), and applying the Fubini property of Triebel-Lizorkin
spaces (cf. [17, Thm. 2.3.4/2, p. 70]), and (4.5), then we have

n 1/p
“ Z (/R P ega N, m dfj)

C2 II(fpt) "l

Z(/ gz, I

Now by the Fubini property again the last expression in (4.6) is bounded by

—(1/p)

gl

[fogl

IN

F E th

IN

s—1—(1
pe—n ) (14 glle) 07

1/p
Fs (R )d@) . 4.6)

—(1/p)

C3 ||(fpt)(m)| Fi 7™ (R) (1 + ||g||/C) ||g| Fp (R

This completes the proof. 0O
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Proof of Proposition 4.1 We first remark that in (4.1) it suffices to take g € F}; ,(R), because we have
the embedding F;  (R) — BV, ;(R), see (4.3). Then we consider a function g € F7 (R) real analytic (see
Remark 1.5). Since

19' 1 m) < cllgllr;, )

the decomposition
An((fog)-g)(z) = (fog)w+h)Ang'(x) + g'(x) An(f 0 g)(2),
together with Remark 1.4 lead to

Ifoglr, @ < Ifoglly + [l llg'l
< c|lf'llss llgl

Foim) T V(fi9)

P.q

F,®) + V(fi9),

where
1/p

o ¢ q/u p/q
vifie) = /]R(/Q gt (t_l /_f |AL(f o g)(x)" g'(a?)|“dh> ?) du 7

and we will estimate it: In the integral with respect to i we restrict ourselves to the interval [0, ¢] denoting the
corresponding expression by V. (f;¢g) and noting that the estimate with respect to [—¢, 0] will be completely
similar. Now, since s — 1 > (1/p) it will be enough to choose a parameter v > 1 such that

1 1
—<s—1+- (see condition (2.2)). 4.7
q u

By means of the elementary inequality

l9'(@)] < |Ang'(2)] + min(lg'(z)], |g'(z + h)])

we split V.. (f; g) into two parts:

wia = ([ ([ (o [

Ju dt p/q /p
< A 0 )@ |Ang! ()" d)” ) @) . and

t
Va(fig) = (/R (/Ooot—<s—1>q (t—l /Of,

a/u p/a
X An(f" 0 g)()|" (min(lg'(x)] g’<w+h>|>>“d"> it> v

1/p

Since f’ € Lo (R) the estimate of V4 (f; g) is obvious. For Va2 (f; g) we will distinguish two cases:
The case 1. If ¢’ does not vanish on R, then g is a diffeomorphism from R to itself. By the change of variable
y = g(z), and by the inequality

min(|g'(@)], lg'(z +h)]) < lg'(@)|* |g' (= + )|~ (0<a<1), (4.8)

we have

V2(f79)p S <Sup|g’|”1’1> / (/ t*(sfl)q
R R 0

t q/u r/q
(et [ 1566w P g ) e an) it) dy:
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at this time we choose

o> 1 4.9)
p

We continue with the next change of variable
© :=0(h) :=g(g™" (y) + h) — v,
which satisfies |©| < t supp |¢’|. Choose « such that
(1-a)u := 1. (4.10)

All this lead to

‘/Q(fhg)p S (Sup |g/ap1) / (/ t*(sfl)q
R r \Jo

p/q

A\
N
2
ko)
BN
G
=
L
+
5
~
£
+
@
I
)
=
~
—
VR
c\
8
4
A
i
=

1 / gt u -
x ( L. s wre- sl d@) U)oy
ol

Also, for the satisfaction of the assertions (4.7), (4.9) and (4.10) we need to find number w, such that

IN

P /1sp—1
77 ) SUP lg'] (see (4.12) below).

1 1 1
-—+l-s5s < - < 1—--. “4.11)
q u p

The case 2. For the general case, we will need to decompose the integral with respect to x as the following (cf.
[6]): Let {I; }; a family of nonempty open disjoint intervals defined such that the complement of | J, J; in R is the
discrete set {x € R: ¢'(z) = 0}. For all l and all « € I; we introduce the positive number

n(x) := dist(x, the right endpoint of I;)

(possibly +o0 if the endpoint to the right is +00). Then we have

L (e (e f o) )
(L) (=)

1/p

Va(f;9)

IN

We denote by

m)  \ P
Va(frg) = ;/j (/0 ) ,

and by V4 (f; g) the corresponding expression to the integral with respect to ¢ > ().
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Estimate of V3(f; g). Both (4.8) and (4.10) yield

m(x)
(g — ()P —(s=1)q
Vi(fig) : (}/ 19/(@) (/ ’

t q/u dt p/a
x (t-l / |Ah<f'og><x>|“|g'<x+h>|dh) ) da

1/p
t

Now we choose both o and u similar to (4.9) and (4.11), respectively. Also, the fact that the function g; (the
restriction of ¢ to I;) is a diffeomorphism of I; onto ¢g(I;), then, as in the case 1, we will reason with the same
changes of variables:

y:=g(z) for ze€l;, ©:=0(h) ::g(gfl(y)+h)—y with |®|§tsblp|g'|.
1

We arrive at

Vi(f;9)

IA

r/q

(g (v))
Z sup ‘g/|ap71/ / tf(sfl)q
I I g(Ip) 0
dt

q/u
X <t1 / [f'ly+©)—f(yl" d@> " dy
|©]<t sup;, |g’|

(Z sup |g/|ap—1+(p/w+(s—1)p> / (/ p—(s=1)g
i I —00 0

r/q

IA

q/u
—1 / ! u %
( [, 15 wre s d@) S

¢ (ngp |g’|sp-1> Id
1

IN

p
PN (R)

Now we claim that

sp—1"

1/(sp—1)
<Z sup |9'(t)|sp1> < cllglizv: 4.12)
I tel;

Indeed, since F; (R) — Cy(R), then for any I; there exists £ € I; such that

lg'(&)] = sup |g'(t)].
tel;

Furthermore we have ¢’ (& + n;(§)) = 0, and the open intervals { £, & + n,(&)[ }; are pairwise disjoint. Then
the assertion follows from

Z tSqu |g’(t)‘51’*1 = Z|g/(§l) _g,(fl _|_m(£l))|sp71 < (Vsp_l(g/))spfl.
1 teh I

See also [6, proof of Thm. 7].
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Estimate of Vy(f; g). By (4.8) with a = 1, and by the trivial inequality |A, (f' o g)(z)| < 2 f'||c0, We obtain

(5w (7 o

. a/u dat p/a
X <t‘1/0 |Ah(f’og)(x)|“dh> t) dx

Vi(f;9)

IN

1/p

. d&t p/a 1/p
<alfle (X[ ([ o) @
I I n (x) t
1/p
< e ||flloo (Z/j m(z) =P g () dx) .
l 1
Again, since ¢’ vanishes at the endpoints of I; we conclude that
’ / o A d
lg (l’& _ lg(@) g(l’jnz(w))l < Sup% vz e ).
m(x)* m(z)® ner  |h[*

Thus, the fact that (1/p) < s — 1 < 1 we can use the norm defined in Section 2.3/(ii), then

Ang' P 1/p
Vi(f19) < 1 1 oo (/ (Suplfgé@) dx)
R \ner |h|
e 1 Nloo 1]

e (1 lloo llg]

IN

Fy s (R)

IN

Fp o (R)>

and we have the desired result by the embedding F; ,(R) — F; (R).
Hence, V, (f; g) can be estimated from above by the right-hand side of (4.1) with a constant ¢ independent of

fandg. 0

5 Composition between B; (R™) and F; (R™)

We will extend our investigation to the boundedness of the composition operator T between Besov spaces and
Triebel-Lizorkin spaces. We put

Loc(R") if [s] =1,

WL (R™) otherwise.

Theorem 5.1 Let s and f be as in Theorem 1.2. Let 0 be as in (4.4). Then the composition operator T’y takes
By y(R")N'Hto F (R").

We propose to show the following result, more precise than Theorem 5.1, and which is a countrepart of
Proposition 4.1 in multidimensional case.

Proposition 5.2 Let 0 be as in (4.4). Suppose (1.2). Then there exists a constant ¢ = ¢(n, s,p,q) > 0, such
that the inequality

s )
[f o9l Feot (L llgllw) lglls; , me) (5.1)
holds, ¥ f : R — R such that f(0) = 0 and f' € F; ' (R), and ¥g € B ,(R")N'H.

—1-(1/p

Fp @) < cllf]
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Proof. Step I. The case m = 1. We will use the notation gz, of (3.9). The Fubini property, and the inequality
(4.1) and the embedding By’ | (R) — BV, _;(R) yield

n 1/p
If o gllry ) < e Y (/RI 1F 0 g2, s (=) dfﬂ')
j=1
n 1/p
< "N s — 2 12
< ellf |Fp_q1(]R) ; ((/}RH1 Hgm_, | F;_NR))
. 1/p
(L e )
(1
< e 1 g (gl e+ Nl )

where the estimate

1/p
sp—1 ~ (1
([ os ! e a8) < ol

is obtained by the Minkowski’s inequality with respect to Ly, 1. Now if g € B} (R") N Loo(R"), then we will
obtain (5.1) by both the embedding B, ,(R") — F;  (R") and the inequality

||9||B§;9_1(1R<") < ¢yl QHQ‘B’ ,(rr)  (seeinequality (3.5)).

Step 2. The case m > 2. We will use induction on m. Hence we have to prove (5.1) with [s] = m + 1. Indeed,
consider first the function

fi(x) == f(z) — f(0)x.

We have f,(0) = f{(0) =0, f{' € F;*(R) and m + 1 + (1/p) < s < m + 2. Then by the property defines
in Section 2.3/(v), and by the induction assumption and by the Banach algebra property of F]f’gl (R™) N Lo (R™)
(see e.g., [17, Thm. 4.6.4/1, p. 222]), we obtain

Rn

s (Zmu(flog)

v=1

F@y) T IA 09“17)

F;,”R,,)nf{noo))

(1/p)
rpt e (L4 1glloe) ™ 2 lgl g o 1Vl )-

n
<o (nfuoogp > (10,9l 157 © s =+ oy + 10091

<es (Il llg

Fy, ) £
Using both the embedding B; ,(R") — B;’_el (R™) and the inequalities
IValloo < llgllwr ey and £ llps -2y < clf g m)s

then we conclude by the embedding B, ,(R") < F;  (R") and the fact that

Fy  (R?) + 1f'(0)] llg|
Fp,(R") + 1 o llgl

||f09||F ®r) < cllfiogl
P,
cllfiogl

Fs  (R")

IN

Bs R”)' D
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Proof of Theorem 5.1 The assertion follows from Proposition 5.2 and the equality
feg:=(fp)og  (for t=]gll). O

Theorem 5.1 yields an extension of [5, Lemma 3.4] to Triebel-Lizorkin spaces, then we have the result of
Bourdaud [5, Thm. 3.1] by the same nonlinear interpolation argument. Namely

Corollary 5.3 Suppose (1.2). Let 1 < r < oo and let a real number t be such that t > s > 1+ (1/p).
Let f : R — R be a function such that f(0) = 0 and f € Fg:f"" (R). Then the composition operator T takes
B, (R")NHto B, ,(R").

Proof. Step 1. Suppose that f' € Fg;l (R). Using Proposition 5.2, then for

0 := L
T+ 1-(/p)
we have
t—1—(1/; n
1f o gllry, @y < ellf gz L+ lall)' ™ P llgllp, ey (Vg € B p(R") NH).

On the other hand we have

Ifog1 = fogly < I llllgr — g2l (Vg1,92 € Ly(R")).

Then by a nonlinear interpolation theorem of Peetre [14] (see also [17, Prop. 2.5.4/2, p. 88]), we obtain

s/t)(t—1—(1 s n
1f o gllzs, ey < eI p=r g L+ lgllz) ™/ P gl gy ey (g € By (R") N'H).

P.q

Step 2. If f € F}:/°°(R), using the equality

fog = (fp-)og (for 72> lgllo),

then we proceed as in Step 1 of the proof of Proposition 4.1. O
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