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1. INTR~OU~TI~N 

Let fe L,( T,), T, an n-dimensional torus, be represented by its Fourier 
series 

f = 1 f(k) eikxs 
keZ,, 

For +=tW), ML, an appropriate bounded function defined on the 
Euclidean n-space R, , with $(O) = 1 we consider the approximation of,Cby 
means 

Mff(x) = C * (a) f(k) eikx, 
keZ, 

v = 1, 2, . ..) 

for v -+ co. Most of the classical means are included in this setting. FOK 
example, if $=e-151ss 0<8<co, or if ~=(l+~~~2)-p’2, O<p<co, the 
means M$f coincide with the Abel-Poisson (Abel-Cartwright) and Bessel- 
potential means, respectively. Generating functions $ having compact sup- 
port lead to partial sums, de la Vallee-Poussin or l?iesz means which have 
been considered in [16]. In this sense the present paper is the continuatio 
of c16]. The rate of convergence of the means M$f against f is measured 
bY 

and by 

I~( 
f 94-l ,f(x)-M’f(x)l’)‘-qlL~(T~)~~ <co, (41 

?J=l 
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where O<p<oo, O<q<co, and s>O ((C,V-‘(...)~)~‘~ replaced by 
sup, (-..) if q = co). It turns out that (3) and (4) are related to the periodic 
Besov spaces B;,,( 7’,) and to the periodic Lizorkin-Triebel spaces F;,,( T,,) 
(for definitions see Section 2). For a certain range of parameters p, q, and 
s depending on the smoothness of $, and of the decay of the functions 
1 -$(t) for 151 -+ 0 and $(t) for 151 --f co, we are able to give an equivalent 
characterization of the classes of all functions satisfying (3) or (4) within 
the scope of these two scales of spaces. Problem (3) for Abel-Poisson and 
Bessel-potential means has been investigated by many authors in the cases 
1 < p < co, q = co, and s > 0. We refer to P. L. Butzer and R. J. Nessel 
[3, Chaps. 3 and 121, B. I. Golubov [7], W. Trebels [25], and 
M. Zamansky [ 311. Results concerning (3) can also be obtained using the 
comparison theorems by H. S. Shapiro [18-201, J. Boman and H. S. 
Shapiro [2], and J. Boman [l]; cf. also W. Trebels [25]. Our main 
interest here is the extension to values p, 4 less than 1 and to spaces of 
Hardy-Sobolev type. In particular, the characterization of (4) in the case 
min(p, q) < 1 requires the use of some recent developments in the theory of 
the spaces F&(T,). We need some powerful techniques based on 
inqualities of Nikol’skij type and vector-valued inqualities for the Hardy- 
Littlewood maximal function. The standard methods that work in the 
case p 3 1 and are used to treat problem (3) cannot be applied here. We 
refer also to the negative results concerning pointwise comparison by 
W. Dickmeis, R. J. Nessel, and E. van Wickeren [4]. Let us add that (4) is 
related to the problem of strong summability, cf., for example, L. Leindler 
[S, 91. The connection with the spaces F,“,,( T,) was pointed out in 
[ 15, 21, 221. 

Let us also mention that problem (3) in the framework of Besov spaces 
(nonperiodic case, p z 1) is treated in J. Peetre [ 14, cf. in particular 
Chap. 8, and Chap. 11 for some remarks concerning p < 11. 

The paper is organized as follows. In Section 2 we shall give the defini- 
tions and properties of the spaces B;,q( T,) and F,“,,( T,) and deal with the 
means M$‘f. The main parts of the paper are contained in Section 3 and 
Section 4. In Section 3 general results concerning (4) and the spaces 
F&(T,) are stated. The interplay between (3) and the spaces Bi,,(T,) is 
considered in Section 4. Finally, these general results shall be applied to 
derive results for Abel-Poisson, Bessel-potential, and Riesz means in 
Section 5. 

Throughout the paper, c, c’, . . . denote constants which may be different 
at each appearence, possibly depending on the dimension or other 
parameters. 
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2. PRELIMINARIES 

2.1 Notations 

We adopt the notation from [17, Chap. 31. Z,, R,, T, have the usual 
meaning. D’( T,) and S’(R,) stand for the distributions on T, and the tem- 
pered distributions on R,, respectively. D’(T,) is identified with Sh( 
(&periodic distributions on R,). We put 

(&J)(y)= (2x)-“” jR, p(x) e-“xy dx, YE& (5) 

(Fourier transform of cp E S(R,) and 

f(k) = (27c-” f(epik*), kEZ, (61 

(Fourier coefficients of f E D'( T,)). L,, 0 < p < CO, and C mean the 
p-integrable and continuous functions on T,,, respectively. Their (quasi-) 
norms are denoted by I/ .I LPI/ and I/ . j Cl/. By L,(R,), 0 < p d 00, we mm 
the non-periodic counterparts. 

Finally, g * f stands for the convolution of f e S'(R,) and g E S’(R,) 
whenever it makes sense. For the general background concerning periodic 
distributions we refer to [5, Chap. 121. 

2.2 The Means Mt f, v = 1, 2, . . . 

Let I+!J = $(Y)E L,(R,) and let $ be defined for all YER,, w 
$(O) = 1. For f E D’(T,) we introduce 

Mff has to be understood in the sense of convergence in D’(T,) or in 
S’(R,). Both make sense and we have 

IffELp, l<p<cn, andifFP’$EL1(R,) thenaccordingto (8)Mff~& 
and 

(M?f)(4=c/R, w1G4v-'~)](.Y)f(~-Y)~Y~ v = 1, 2, . . . . (91 

If $ is continuous in a neighbourhood of 0 then 

M!f-+f (v--,00) 

in D’( T,) or S’(R,) for all f E D’( T,). This describes an approximation 
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process by periodic functions, in general, and by trigonometric polynomials 
if supp * is compact. 

In order to prove our main results we need the Hardy-Littlewood 
maximal function which is defined by 

bvf)(x) = sup b s, If(. 

for any locally integrable function J Here the supremum is taken over all 
cubes Q centered at x with sides parallel to the coordinate axes. Of great 
use are the following inequalities which we adopt from [ 16, Lemma 2 and 
Lemma 31. 

LEMMA 1. Let 0~1-6 1. Let p(5) be a continuous function with 
F-‘pEL1(R,) andsupppc{511[1<4}. Let 

f(x) = ,kl zj+, fU4 eikxT j, K=O, 1, 2, . . . . 

be a trigonometric polynomial of radial degree 2’+ K (Ikl’ = (k: + . . . + k,2)). 

(i) There exists a positive constant c independent off, p, j, and K such 
that 

kFz p(2-jk) T(k) eikx r 
n 

<c2(~+j)n(l--r) 
s 
R, ~(~-~p(2-~~))(y)l’If(x-~)l’dy (10) 

holds for all x E T,. 
(ii) Let 

w-‘P)(Y)l G ccl+ lYWA (11) 

for all y E R, and for some real number ,I> n/r. Then there exists a constant 
c’ = c’(c, A) independent off, j, and K such that 

,Fz p(2-‘k) f(k) eikx r < c’2K”‘1-rr)MI f Ir (x) (12) 
” 

holds for all x E R,, and all p(c) satisfying (11). 

Remark 1. If r = 1 then we can replace the trigonometric polynomial f 
by an arbitrary locally integrable function in (10) and (12) as far as the 
right-hand sides make sense almost everywhere. 
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2.3. The Spaces Bi,q and Fi,4 

Let Sp be the class of systems of test functions with the following proper- 
ties: There exist positive constants cO, cl, and c2 with c1 d 1 such that 

SuPPcp0~{5/151~~0~ 

and 

s”PP (Pk = 
{ 

41c,2k< Ii’1 <$2” 
1 

l= f. (Pk(t)> tER, 

k=O 

for each multi-index a and each k, k = 0, 1, . . . . 

DEFINITION. Let O<pdoo, O<q<co, -CC <S< 00. Let (~j>,FEOE 
EetfED’(T,)and 

h;(X) = 1 cP,(k) P(k) eikx; j=o, 1, 2 ) . . . . (13 
krzz,, 

(i) We put 

B;,q= 
i 
flf~D’(Tnh lIfIB;.,ll’P 

f. 2’“4 IIJ;.(x)&p 
j=O 

B;*a = ~flf~D’(Tn), llflB;,mil(P 

= sup 2’” Ii&(x) j L&l < co >. 
j=O,l,... 

(ii) If additionally p < 03, then we put 

F;,q= 
! 
flf~D’(TA llfl~;,411q 

F” p,m= tflf~D’(~,), llflF;,ml160 

= II suP 2jslfj(X)l l Lpll < 00 >. 
i=O,l.... 

(16) 

(17) 
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Remark 2. For a detailed discussion of these function spaces we refer 
to [17, Chap. 31. There further characterizations, e.g., by differences and 
derivatives can be found (cf. also [26] and [ZS] for the non-periodic 
analog). Note that the spaces FpT4, m = 1,2, . . . . 1 < p < co coincide with the 
periodic Sobolev spaces. 

3. GENERAL RESULTS FOR FpS,4 

3.1. Direct Results 

Let h( 4) E S(R,) and H(t) E S(R,) be functions satisfying 

45) = 1 if 1<1<1, 

wphc itI 14162) 

and 

(18) 

(19) 

THEOREM 1. Let + be a bounded continuous function on R, with $(O) = 1 
and F-‘$ E L,(R,). Let (T > 0 and A> n such that 

sup IF-‘Cl2’51 -“(I -vWt)) W~)I(Y)I dc(l+ Ivl)-” (20) 
/=o,-l,-2,... 

and 

SUP IF-‘lYG%) fJ(Ol(y)l dc(l + IA-” (21) 
I= 1,2,... 

hold for all y E R,. 
If n/l <p< co, rz/,l<q< co, and 0 -CS<CS then there exists a positive 

constant c’ such that 

!, vsq- ’ If(x) - ~tl(x)lq)lr 1 L,/I G cllf I F;,,ll (22) 

holds for all f E F;,,4 A L, (modification if q = co by sup, vsI ‘.. I ). 

ProoJ: Step 1. Let f E F;,qn L,, s > 0. Then f E L,. Furthermore 
M$f E L,, cf. (9). We decompose 

$((I= $(t-) h(2-Lt) + $(tXl -W-L5)) 

=r(5)+x(O, (23) 
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where L is a natural number to be chosen later on. The idea is to 
“approximate” the means Mzf by the “truncated” means Mff. e have 

il( fI vsq-l If(+W.f(x)l” 
v=l 

<c 
(IIC 

f vsy-1 /f(x)-M’1 
v=l 

vf(x~~~)l” / hii 

+ 
IK 

z1 vsq-l lkwfw)l~y / L$ 

where M,Xf has the meaning of (7) with x instead of $. We estimate the 
first summand on the right-hand side of (24). Using formulas (4.6) an 
(4.7) from [16] we obtain 

where 

Now, let us choose a function p E S(R,) such that 

It is not hard to see that the system { qk)pzO, defined by 

qPkc.1 =4wk9> k = 1, 2, . . . . 

and an appropriate function qo, is an element of CD. By the properties of q, 
h, and H we have 

j+Li-2 

qT(2-jk)= 2 q,(2-‘k) (p(2-‘k) H(2Y’k) 
I= 1 

Lf2 
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Here H,(.)=H(2-‘.) and qpr=H-,=O if Z=O, 1,2, . . . . We put 

fr,c,(x) = c l2-‘W’ p,(k) f(k) eikx, z=o, &I, . . . . 
keZ, 

By (30) we obtain 

,Fz r,(2-‘k) .@I eikx 
n 

The function I+? satisfies (20) and (21). Therefore, inequality (11) holds for 
all functions p(t) = 12’4;1 PD ~~(2’5) H(t), 1~ r < 2, where the constant c is 
independent of L, I, and r, I < L + 2, 1 < r < 2. This is not difficult to see; 
we omit the details. Hence we can apply part (ii) of Lemma 1 to the right- 
hand side of (27). This gives 

kFz r,(2 -jk) f(k) eikx 
n 

L+2 

dc c 2’“(M Ifj+Jy (x), 
I=-cc 

(28) 

where the constant c is independent ofj, L, Z, r’, x, and J (25) and (28) lead 
to 

Ii! vsq- l If(x) - M,“f(x)l” 
V==l 

<c z 2@4 ( y2 2’“W lfj+l,J w). (29) 
j=O I= -cc 

This is the counterpart of formula (4.12) in [16]. By our assumptions 
concerning 1, p, and q we may choose r < min( 1, p, q). Then 

if 
l/q i- 

94-l If(x)-My(x)lq LP 
v=l > I Ii 

(30) 
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where the last inequality follows by the assumption s< (r. Applying the 
periodic version of the vector-valued maximal inequality of C. Fefferman 
and E. M. Stein [6] (cf. [17, Proposition 3.2.41) to the right-hand side of 
(30) we obtain 

f v=- l If(x) - 
v=l 

Repeating the above arguments with 151” q,(t) instead of 151 
using that 

cpiCx) = CVj- ltx) + cpitx) + ‘p,-+ ICxIl Yjtx)2 

the right-hand side of (31) can be estimated by c i/f j F;,,lI 

Step 2. We estimate the second summand on the right-hand side of 
(24). Obviously 

lf vsq-1 lA4,“f(x)l” 
V=l 

G c f 2jsq sup lM,“f(x)l” 
j=O I’ = 21, ___) 21+ 1 ~ I 

Let (qj >zo be the system of Step 1. Then (19) and (20) yield 

X(2-‘75)= f X(2pizE) Hl+j(51 (Pl+jtt)Y j=o, 3, . . . . 
I=L-2 

We put 

P,,,(5) =x&w H(5), l=L-2, L-l ),.,’ 
1 
j<Z<l. 

The function Ic/ satisfies (21). Consequently, using the properties of h and 
H, we can verify that the above functions p,,,(5) satisfy condition (I I), 
where the constant c does not depend on r, i < r d 1, and E= L - 2, 
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L - 1, . . . . Therefore we can apply Lemma 1, part (ii), to estimate the 
right-hand side of (32). We arrive at 

il( 
57 

l/q r 
vsq-- ,llqf(x),” L, 

v=l > 1 !I 

where r can be chosen such that n/A < r < min( 1, p, q). The constant c is 
independent of r and L. Using the assumption s > 0 we obtain from (33) 
in the same way as in Step 1 (cf. (30) and (31)) that 

IK ;, P--I lM:fix)qq 1 Lpi1 <crLs Ilfl~;,qIl (34) 

for all admitted parameters p, q, s. Using (24) and the estimate from Step 1 
this completes the proof of (22). 

Remark 3. Let us discuss the conditions (20) and (21). To this end we 
introduce the non-periodic Nikol’skij (Besov-Lipschitz) space Bi, co (R,). 
Let II=Z+r, Z=O, 1,2 ,..., O<r<l. Then 

B:,,(4)= 
i 
flf~L(W, lIflB:,,UM 

= IlflL(Rn)II + c sup IV’ 
Ial = I Ihl +o 

x lld~“+’ D”sl L,(R,)ll -=c co 
1 

. (35) 

The proof of [16, Corollary 21 shows that (20) and (21) are satisfied if 

(=. y, ___ II 12’4 --a (I- W’4) H(x) IB:,+,“R)II < ~0 (36) 
1 > 1 

and 

sup IlvW’~) H(x) I B:,Z3R,)II < cc (37) 
I= 1,2,... 

for some number E, E > 0. Moreover, if 

Iu?wY)l <ccl f IJ4-” 

then 

(38) 

o<yyF<,, ,m;m IXI’O” IWIXI -u Cl- W)))l < 00 (39) 
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and 

where m is a natural number larger than /2, imply (20) and (21), respec- 
tively. Here 0 < 6 1 < co, 0 < 6, < co. Note that (39) necessarily leads to 

It will be seen later on that TV corresponds to the saturation order 5 
approximation process Mzf. Furthermore, the number A is related to the 
smoothness properties of the function $ involved. Note that we do not 
need any smoothness properties of $ at the point 0 itself but on ,,\IOj. 
This is an improvement of [16, Theorem 31. For consequences we refer to 
Section 5.3 (Riesz means). 

Remark 4. Let us mention that 

F;,, n LI = F;,, 

if s > n(l/min(l, p) - l), cf. [ 17, Theorems 3.5.1/l] 

Remark 5. If we restrict ourselves to the case 1 < p < cc and 1 -=z 4 < DZ 
we can apply vector-valued multiplier theorems. This simplifies the above 
proof in this case. We refer to the method used in [lS] and in [17, 
Chapter 31, as well as to the results by II. Dappa and W. Trebels [30]. 

3.2. Inverse Results 

THEOREM 2. Let $(<) be continuous at 0 and infinitely dl~fere~tiable on 
R,\(O) with $(O)= 1 and F-‘$I E L,(R,). Let d be a natural number such 
that 

and let (21) be satisfied for a real number A, 1 >rz. If n/i< p< co, 
n/A. < q < co, and n( l/min( 1, p, q) - 1) <s < US then there exists a positive 
constant c such that 

lISIF;,,ll Gc( IISIL,II + iI@, vsypl lfWMriji,lq)l’” / Lpii) (43) 

holds for all f E Fi,, (modification if q = 00 ). 
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Proof: Without loss of generality we can assume that f(O)=0 (cf. 
Step 1 of the proof of [ 16, Theorem 11). In contrast to the proof of 
Theorem 1 we use another system {~pi}~ to define an appropriate 
quasinorm in F,“,, . Let o, cp E S(R,) be functions with the properties 

and 

w(x) + f cp(2-j”X) = 1. 
j=l 

Then we put &x)=o(x) and q,Jx) = ~(2-~+ix), k= 1,2, . . . . Hence 
(qj}JYO~ CD and f(O) = 0 leads to the inequality 

llfl~;,,ll Gc (44) 

where c is independent off. 
Let us put r(5) = $(W) - II/(t)- B ecause of the smoothness properties of 

$ and (42) the functions 

are infinitely differentiable and have compact support. It holds that 

&+1(x) = C ,o,(2-‘k) u](z2-jk) f(k) eikx, j=O, 1 ) . . . . (45) 
keZ, 

Let h be the function from (18) and let 

g,,j(x) = ,Fz q(T2-jk) h(T2-Lpjk) f(k) eikx, 
n 

where L is a large natural number which will be chosen later on. As a con- 
sequence of (45), (46) and part (ii) of Lemma 1 we obtain the estimate 

Ifi+ I(X) C Pz(2-‘k) k,j(k) eikx r 
ksZ, 

<C2Ln(1--r) (A4 Igz,jy)(x), (47) 
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where n/A < r6 1 and c is independent of t, j, and L. If z =2jJv, 
v=2i-1 , ..~> 2j- 1, then we put (v= 1 ifj=O) 

g,(x) = g,,Jx) = c if(v-9) h(v-12-%) f(k) eikx. 
ktZ,, 

Now, (47) leads to 

2J- 1 

1fi+~(~)1q~~2Ln(llr--l)q2-j 
I;-, (M lg”lr)q” bf 

and hence to 

( 2 2@4 Ifitl( l/q 
j=O 1 

< c2 Ln(l/r- 1) 

( 

“Z, (M IvS- ‘.b”(x),‘)q’)? 8483 

We can choose r < min( 1, p, q). In the same way as in the 
Theorem 1 (cf. (30), (31)) we derive from (48) 

IK f 2’“9 IJ;(x)l9 l/9 L, 
j=l 1 I Ii 

B c2 Ln(l/r- 1) 

IK 
;, vs4--1 lk”w)‘iq / L$ 

We split 

jgy(x)l = - c rf(v-%)jQ) eikx 
ksZ, 

+ ,& q(v-‘k)(l -h(vP’2-Lk)) f(k) eikx 

G If(x) _: @%a + If(x) - JcQ-(x)l+ lJwf(x)l, (501 

where ~(5) = ($(~)-$(</d))(l-/~(2-~<)). It is not difficult to see that 
(21) is satisfied with x instead of $ independent of L (cf. (32), (33)). 
Therefore, Step 2 of the preceding proof shows that (34) holds true for this 
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function x. Note that the restriction s < 0 has not been used there. As a 
consequence of (34) (with the just defined x), (49), and (50) we find 

I;( 

f 2’“q &.(x)y 1’q L, 
j=l 1 I II 

+ c’ i( z1 vsq-- If(x) - Mff(xvj”’ 1 LPI1 ) (51) 

where c’ depends on L and r. We can choose r such that n( l/r - 1) < s and 
hence L such that ~2~(“(“‘-~)-~) < , E f or a given E > 0. This proves that 

vsq-’ If(x) - I14ff(x)]~)~‘~ / L,ii. (52) 

Now, (52) with E < 1 leads to (43). 

4. GENERAL RESULTS FOR Biq 

4.1. Direct Results 

The functions H(5) and h(5) have the same meanings as in (18) and (19). 

THEOREM 3. Let e(c) be a function satisfying the assumptions of 
Theorem 1 with real numbers IS > 0 and A > n. If n/A < p 6 00, 0 < q <’ GO, 
and 0 KS < (T then there exists a positive constant c such that 

.I? 
l/q 

vs9-- Iv(+~!f(~)IL,llq 
> 

dc llfIB;,,ll (53) 
V=l 

holds for all functions f E B;,q n L, (modification if q = co ). Under the same 
assumptions there exists a constant c’ such that 

( jgo 2jsq l/q 
sup Ilf(x)-wtf(xw,llq 

> 
d c’ Ilf I &Jl. (54) 

Y = 21, _.., 2J + 1 - I 
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Proof. Obviously, (53) is an immediate consequence of (54). To 
prove (54) we split as in (23) and (24). Then we obtain 

f 2j"4 

j=O Y = 2J 
,_,_, 2,+'~1 llf(+wff(xw,llq sup 

< c f Pq 

( 
sup IIf -KY(x) I ~,llq 

j=O Y = 21, .__, 2J + ’ - 1 

+ f 2isq sup ll~Ffbw,ll” 
j=O Y = 2J 

,_,_, 2,+‘~1 
1 

. 

In the same way as in the proof of Theorem 1, Step 2, the second summan 
on the right-hand side of (55) can be estimated (with obvious modifications 
and using the scalar case of the Fefferman-Stein inequality). This gives that 

In order to estimate the first summand on the right-hand side of (55) we 
observe that 

jzo 2jsq sup 
v=2j,...,2j+lp1 

IIf - n/fzfc.xf I L,ll q 

< c f 2jsq 
( 

sup llM~,+lf(x)-M~f(x)i~,/l4 
j=O v=2/,....2J+‘-l 

+ f 2jsq llf(x)-M~,+lf(x)lL,l/q . 
j=O ) 

Because s > 0 the second summand on the right-hand side of (57) can be 
estimated by 

This follows by a modification of the arguments of Step 1 of the proof in 
[16, Theorem 31. Hence, we have by (57) 

j;. 2jsq sup 
“=2,,...,2/+‘-1 

IIf - JcY(xI I qIllq 
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This estimate is the counterpart of [16, (4.6)]. Modifying the method of 
Step 1 of the proof of Theorem 1 (cf., in particular, (29)-(35)) the desired 
inequality (54) follows from (55 )-( 58). 

4.2. Inverse Results 

THEOREM 4. Let $(t) be a function satisfying the assumptions of 
Theorem 2 with real numbers u > 0 and A > n. 

(i) If nll<p,<m, O<q< co, and n(l/min(l, p)- 1)~s~ 00 then 
there exists a positive constant c such that 

llflB~,~ll~c(llflL,ll+(~~v’“~llf~x~-Mtfx~lL,ll~)1’q) (59) 

holds for all f E B;,q (modification if q = co ). 
(ii) Ifn/A<p<oo, O<u<co,andn(l/min(l,p,u)-l)<s<co then 

there exists a positive constant c such that 

llf I B;J 

Gc( Ilf lLpll +(pq ii( 2-j c “,‘y,’ If(x)-wTf(x)l" )'-" 1 Lp~I")'") 

(60) 

holds for all f E Bi,q (modification if q = a). 

ProoJ Step 1. The proof of (i) follows exactly the line of the proof of 
Theorem 2. We have to use the scalar Hardy-Littlewood maximal 
inequality instead of the vector-valued one. 

Step 2. We prove (60). The functions q(S), p,(t) (1 < z < 2), g, j(t) 
(16 r < 2, j = 0, 1, . ..). and g,(l) (v = 1,2, . ..) have the same meanings as in 
the proof of Theorem 2. Lemma 1, part (i), shows that 

If;+ I(X)I’ = 1 1 P,G-‘~) it&) eikjr 
ksZ, 

~~z(~+j)n(l--r) 
I 

R, I(F-1p,(2-j.))(y)(r 

x lgz,j(x-YY)l’dY (61) 

for all x E R,, where r, 0 < r < 1, is a number to be specified. This is the 
counterpart to (47) and corresponds to [16, (3.31)]. We choose r, such 
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that Y < min( 1, p, u). There exists a real number 1” > n/r for each r, 0 < Y 6 1, 
such that 

I(P-1pz(2-j9)(y)l <c2’“(1+ 12’yl)-“, (62) 

where c is independent of z, 1< z < 2. Splitting the integral in (61) and 
using (62) we find 

lfj+ ,(x)l 6 &n(l’r- l) 2”” 

We put z = 2’+‘/v, where v = 2’, 2jf 1, . . . . 2ji1 - 1. Taking the uth power 
in (63) and summing up over v = 2j- I, . . . . .2- 1 yields 

By means of the triangular inequality it follows therefrom (use r < u and 
/k--n>(I) that 

<c2--Ln(r-l)+jn-jr/u 

x f 2-%r/j,,,~2-,+,(2~~~~,~ I&G- W)-“dy 
I=0 

< c’2-L”(‘-l) 

x f 2-(h-n)l~ 
i( 

2-j 

I=0 Y = 21 

1 ls,(-:")ii'lr (x) 

< &) -Ln(r - 1) 

2/+1-j l/u T 
XM 2-j 1 /g,/” 

I( Y = 2J 1 I 
(x). i45) 

Now we can apply the Hardy-Littlewood inequality on T, (cf. [IT, 
Proposition 3.2.41) to obtain that 

z/+1--1 uu 
iI&+ 1(x) 1 LPI1 < C2Ln(1’r- l) 

IK 
2-j c /g,/” 

Y = 21 > I 
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and hence 

f 2’“4 lljj(x) I LPI14 < c2L”(‘+-1) jg0 2”“4 
j=l 

2/+1-l l/u 
x 

IK 
2-j c Isy(x)l” ) I II 

L, . (67) 
y = 7) 

This is the counterpart of (49). Now we argue in the same way as at the 
end of the proof of Theorem 2 to derive the inequality (60) from (67). This 
completes the proof. 

Remark 6. If p > 1, 0 < q 9 co then (60) holds true for all s > 0 and for 
all functions with finite right-hand side. In particular, this leads to the 
following corollary. 

COROLLARY. Let $(t) be a function such that the assumptions of 
Theorem 2 are satis$ed. Let f E L,. 

(i) If0 < u < co, 0 < q d 00, 0 < s then there exists a positive number c 
such that 

llfl%,,Il sc(llflLLll +(Fo2jsq 

il( 

2i+l-l 
x 2-j c If(x) - Wf(x)l 

Y = 2J 

u)l’” 1 L-11”)‘” (68) 

holds. 

(ii) If 0 < q < co, s > 0 then there exist positive numbers c and c’ such 
that 

Ilfl%mII dc ( 
lIflLII + SUP 2'" 

j=O,l , 

x 2. 
IK 

2,+1-l l/q 
-j c If(x)-Mff(x)lq )I II) L, 

Y = 2J 

holds. 

vsq-- If(xhw-(x)lqlLm (69) 

Remark 7. (68) and (69) show that the results obtained by L. Leindler 
[S, 91, L. Leindler and A. Meir [lo], J. Nemeth [12], and others concern- 
ing the analogous problems for partial sums of one-dimensional Fourier 
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series, de la Vallee-Poussin means, and Fejer means can be generalized to 
means Mff. We refer also to Cl.5, 16, 21, and22]. 

Remark 8. If u < p then we have 

IK 

2/+1-l 
2-j c If(x)-Jwf(x)l” L, 

” = 21 

Hence the right-hand side of (60) can be estimated by the left-hand side of 
(54) provided that u d p. 

5. EXAMPLES 

Now we are going to apply the general results of Sections 3 and 4 to 
concrete (classical) means. For abbreviation let us put 

llflB;,,2m := llflq + f vs4-- 
( ! 

l/q 
IIf - JCfCx) I &i/q p (71) 

v=l 

llf IB;,q ; M*, UII 

:= llf I4 +(psq ii( 
i/u 4 uq 

2-j c If(x)-M!f(-w 2y;y,’ 
> I ID 

L,' , (72) 

llf I B;,,; M*‘, *II 

Ilf IF,,,;M’lI := llf l-&II + f vsq-’ lf(x)-K!'fWlq (74) 
!J=l 

(modification if q = co ). Given a generating function t,k we are interested in 
the admissible range of parameters p, q, u, and s such that the above quasi- 
norms are equivalent to the quasi-norms in Bi,, and Fi,q, respectively. 

5.1. Abel-Poisson Means 

Let 0 < 8 < co. The means 

!lBff(x) = C e-lki’lBj?(k) eikX, v = 1, 2, . ..) (75) 
kdT, 



258 SCHMEISSER AND SICKEL 

are called the Abel-Poisson (or Abel-Cartwright) means. 0 = 1 corresponds 
to the Abel and 8 = 2 to the Gauss-Weierstrass mean. 

LEMMA 2. Let 0~8~ co. Then the function ee(<) =e-lete satisfies (20) 
and (21) with r~ = 8 for all il> 0. Furthermore, F-‘Ic/, E L,(R,). 

ProoJ: Let us put r(S) = 151 -‘(l - $e(<)). Obviously, ~(5) is infinitely 
differentiable on R,\ { O> and it holds that 

where q,(t) is bounded on (<IO< 141 <S,> for all 0~6, <co. Hence, (39) 
is satisfied for ll/e([) for any 6,, 0~6, < co, and any i, O<,I< co. This 
implies (20). On the other hand it is easy to see that (40) is fulfilled for 
all I, 0<1< co, and all &, 0~6, < co. This shows the validity of (21). 
Now, let h(t) be the function from (22). We decompose $e(<) = 
ICld5) 45) + $dt)(l -h(O). The function $dS)(l -h(O) belongs to 
S(R,). Furthermore, 

$e(t) h(l) = 1+ f y (ItIs %WW, 
j-1 ’ 

where g E S(R,) such that i;(t) = 1 if 5 E supp h. Using (35) one can show 
that IQ’~“(~)EB;,~~(R,) (cf. also [27, Remark2.5.16/1]). B;,‘,B(R,) is an 
algebra with respect to pointwise multiplication (cf. H. Triebel [26, 
Theorem 2.8.31). Hence, (76) yields that $Jt) h(l) EBT,L’(R~). Thus, we 
have 

IF-‘We(.) h(.))(y)1 G 41 + IYI I-’ 

for all il, 0 < A <n + 8 (cf. Remark 3 and [ 16, Corollary 21). Combining 
these results we obtain that F-‘Icls E L,(R). This proves the lemma. 

Lemma 2 shows that Theorems 14 can be applied to the means ‘%B~f(x), 
8 > 0. All the assumptions which we need are satisfied if we choose CJ = 6 
and ,I > n. This yields the following theorem. 

THEOREM 5. Let Mtf(x) = !.I$f(x), v = 1,2, . . . . 0 < 0 < co. 

(i) IfO<p<co, O<qdco, andn(l/min(l,p)-l)<s<fI then (71) 
and (73) are equivalent quasi-norms in B6,4. 

(ii) IfO<u<c~,O<~~pdco,O<q~~o,andn(l/min(l,u)-l)< 
s < 8 then (72) is an equivalent quasi-norm in B&. 

(iii) IfO<p<co, O<q,<co, and n(l/min(l,p,q)-l)<s<Q then 
(74) is an equivalent quasi-norm in F;,,. 
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Remark 9. Let us note that the Corollary, in particular (48) an 
holds true with ZBY instead of MfJ This establishes a result c 
the strong summability of Abel-Poisson means. For the problem 
summability and strong approximation we refer to L. Leindler [9 

Remark 10. It has been proved by B. I. Golubov [I71 that 
0 <s d 8, 1 d p d co, imp,lies that (71), with q = co, is finite. Exce 
limiting case s= (3 this coincides with one direction of Part (i) of the 
theorem. The corresponding one-dimensional result has been prove 
earlier, cf. P. L. Butzer and R. J. Nessel [3] and W. Trebels 1253 and the 
literature cited there. Moreover, if 

ve IIf - wTf(4 I &II = Q(l)> (v -+ 01: 1, f-77) 

where 1 d p < co, then f = const. This can be found, for example in 
W. Trebels [25]. Hence, the upper bound 8, s< 6, is quite natural. If 
s < n(l/min(l, p) - 1) then the assertions of the theorem cannot be trsae 
because the a-distribution belongs to B& and F;,, in this case. Thus s51lle 

limiting cases remain open. Furthermore, the cijuestion arises whether the 
q-dependence in part (iii) can be removed. 

5.2. Bessel-Potential Means 

Let O<b< co. The means 

are called the Bessel-potential means. 

LEMMA 3. Let 0 <PC 00. The function $&s)= (I + 1412)-p’2 satisfies 
(20) and (21) with a=2for all& O<A<CD. Furthermore, Fpl$B~LI( 

ProoJ: It follows from the asymptotic behavior of t;- ‘es that 
F-‘tia E L,(R,), cf., for example, S. M. Nikol’skij [13, formula 8.1/(e)]. 
The function I<[-‘(1 -(l + /512)pE’z) . IS, infinitely differentiable on 
Hence, we have (39) with B = 2 for all A and 6 i, Moreover, straightf*~a~~ 
calculations shows that (40) holds for all A and 6,, too. By Remark 3 this 
proves the lemma. 

THEOREM 6. Let Mff(x) = e{f(x), v = 1,2, . . . . 

(i) IfO<p<co, O<qdco, andn(l/min(l,p)-1)<s<2 thep? (71) 
and (73) are equivalent quasi-norms in B;.,. 

(ii) ~~O<U<CD, O<u<pda, O<qda, andn(l/min(l:u)-l)< 
s < 2 then (72) is an equivalent quasi-norm in Bi,4. 
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(iii) Zf O<p<co, O<qdco, and n(l/min(l,p,q)-l)<s<2 then 
(74) is an equivalent quasi-norm in Fi 4. 

Remark 11. Remark 10 applies to the means !Gff, too. Furthermore, it 
can be found in W. Trebels [25] that 

1 < p < cc, 0 <p < cc implies that f 3 const. Hence the upper bound s = 2 
is quite natural. For the lower bounds see Remark 10. The limiting cases 
are not covered by our theorem. 

5.3. Riesz Means 

Let O<a<co. 0~0~ co. The means 

‘%%x> = ,gv (1 -Iii’)’ f(k) eikn, v = 1, 2, . ..) (79) 

are called the Riesz means (Bochner-Riesz means if 8 = 2). 

LEMMA 4. Let O<~<GO, 0<8<co. Thefinction $a,B(<)=(l-151”)“, 
satis$es (20) and (21) with CJ = 0 for all 1, 0 <I <a + (n + 1)/2. Further- 
more, FP’$cs~ L1(R,) ifa> (n- 1)/2. 

Proof: Clearly, (40) holds for all Iz, O<n< co and all 6,, 6, > 1. 
Furthermore, it is known that $a,s([) satisfies (38) with A = CI + (n + 1)/2, 
cf. J. Peetre [14, p. 2151. 

This implies that F-l$or,B~ L,(R,) if a> (n- 1)/2. By Remark 3 we 
obtain the lemma. 

The lemma shows that we can apply our general results to the means 
%;,“f if a > (n - 1)/2. This leads to the following theorem. 

THEOREM 7. Let Mff(x) = ‘%;ef(x), v = 1,2, . . . . 0 < 0 < co, and 01) 
(n - 1)/2. 

(i) Zf2n/(2crfn+l)<p<co, O<qgoo, andn(l/min(l,p)-l)< 
s < 9 then (71) and (73) are equivalent quasi-norms in Bi,4. 

(ii) Zffn/(2a+n+l)<p<co, O<u<oo, O<udp, O<qQa, and 
n( l/min( 1, u) - 1) <s < 8 then (72) is an equivalent quasi-norm in B;,4. 

(iii) Zf 2n/(2a + n + 1) < p < 00, 2n/(2a + n 4 1) < q < co, and 
n( l/min( 1, p, q) - 1) <s < 9 then (74) is an equivalent quasi-norm in Fi,,. 

Remark 12. The above theorem extends our results obtained in [16, 
Theorem S] to the case 0 # 2. Again, the case s = 0 is related to the satura- 
tion class of the means %>Of, cf. W. Trebels [25] or P. L. Butzer and 
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R. J. Nessel [3, Chaps. 12, 131. Moreover, CI = (n - 1)/2 corresponds to 
Bochner’s critical index, cf. B. M. Stein and G. Weiss [24, Chapter 71. The 
question arises whether Theorem 7 remains true for some a 6 (n - 1 f/2 if 
1 < p < co. Partial results concerning part (i) can be found in W. Tre 
[25, 5.21 and the references given there and in [23, 6.1.31. For charac- 
terizations by the norms (71) (with 1 < p d 00) for Riesz means we refer 
also to J. Lofstrom [ 111, R. M. Trigub [29], P. L. Butzer and R. J. Nes 
[3], and to the comparison theorems by H. S. Shapiro [lg-201, a 
J. Boman and H. S. Shapiro [2]. 

Remark 13. Theorem 5 and Theorem 7 show that the Abel-Poisson 
means %l3:f and the Riesz means ‘%>“f have the same approximation 
properties provided that c( > (n - 1)/2, 16 p < co, 1 d q < co. Concerning 
the characterization of the spaces B;,q this is well known, cf. the com- 
parison theorems mentioned in the preceding Remark. For values p, q less 
than 1 we have different properties; in particular, the admissible parameters 
p and q depend on a (p> 2n/(2a+n + I), q>2n/(2a+n+ 1)) in the case 
of the Riesz means, This is caused by the smoothness properties of tia,@(l) 
at the points 5, 151 = 1. Furthermore, let us refer to the negative results 
concerning the pointwise comparison of Abel-Poisson and Riesz means 
obtained by W. Dickmeis, R. J. Nessel, and E. van Wickeren [4]~ 
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